基于Emebdding的检索增强生成效果不同模型对比:重排序十分有利于检索增强生成的效果
基于Embedding模型的大语言模型检索增强生成(Retrieval Augmented Generation,RAG)可以让大语言模型获取最新的或者私有的数据来回答用户的问题,具有很好的前景。但是,检索的覆盖范围、准确性和排序结果对大模型的生成结果有很大的影响。Llamaindex最近对比了主流的`embedding`模型和`reranker`在检索增强生成领域的效果,十分值得关注参考。
聚焦人工智能、大模型与深度学习的精选内容,涵盖技术解析、行业洞察和实践经验,帮助你快速掌握值得关注的AI资讯。
基于Embedding模型的大语言模型检索增强生成(Retrieval Augmented Generation,RAG)可以让大语言模型获取最新的或者私有的数据来回答用户的问题,具有很好的前景。但是,检索的覆盖范围、准确性和排序结果对大模型的生成结果有很大的影响。Llamaindex最近对比了主流的`embedding`模型和`reranker`在检索增强生成领域的效果,十分值得关注参考。
OpenAI在发布了多模态的GPT-4V(GPT-4 with Vision)的接口,可以实现图像理解的功能(`Image-to-Text`)。这是OpenAI的第一个多模态接口,在以前的接口中,OpenAI都是文本大模型,相关的费用计算都是按照输入输出的tokens计算,虽然与一个单词多少钱有一点差异,但是也算直观。而GPT-4V是一个图像理解的接口,这里的费用计算不像文本的tokens那么直观,那么这个接口的费用计算逻辑是什么?这个计算逻辑透露了什么样的模型架构信息?本文将介绍这个问题。
就在刚刚,有网友发现OpenAI的官方的文档接口更新中增加了128K的超长上下文版本,命名为GPT-4-128K-Turbo!
国产大语言模型的开源领域一直是很多企业或者科研机构都在卷的领域。最早,智谱AI开源ChatGLM-6B之后,国产大模型的开源就开始不断发展。早期大模型开源的参数规模一直在60-70亿参数规模,随着后续阿里千问系列的140亿参数的模型开源以及智源340亿参数模型开源之后,元象科技开源650亿参数规模的大语言模型XVERSE-65B,将国产开源大模型的参数规模提高到新的台阶。
尽管OpenAI最早也是马斯克和别人一起创立,由于各种原因分道扬镳之后马斯克也没有对相关产品感兴趣,直到ChatGPT风卷全球之后,马斯克与OpenAI的人公开吵了几次之后成立了这家公司。半年后的现在,马斯克透露xAI即将发布它的首个大模型Grōk AI。而一位老哥已经透露了该模型的一些细节。
xAI是马斯克在2023年3月份创办的一家大模型初创企业。因为ChatGPT过于火爆,离开OpenAI之后马斯克又再次开始推出大模型,就是这个Grok。xAI今天也宣布了Grok模型的细节。其在多个知名榜单评测上的得分结果超过了ChatGPT-3.5水平。本文详细介绍一下这个模型。
ChatGPT的发展速度很快,在前面已经介绍过ChatGPT即将推出的Team订阅计划和新界面,包括对接自定义数据和自定义接口等。此外,DataLearnerAI还发现ChatGPT即将推出关联APP的能力,截图显示,目前已经测试了对接Google Drive和Microsoft 365两个。
ChatGPT是当前大模型服务最前沿和风向标,每一次改动都会引起巨大的关注。此前,在ChatGPT的js脚本中就隐藏了即将发布的ChatGPT Team计划。而现在,新的ChatGPT UI代码和功能也被发现。新的GPT除了界面的巨大变化外,还有一个类似自定义AI Agent能力,可以直接接入自己的私有数据和API接口对外提供服务!十分震惊!
语音识别在实际应用中有非常多的应用。早先,OpenAI发布的Whisper模型是目前语音识别模型中最受关注的一类,也很可能是目前ChatGPT客户端语音识别背后的模型。HuggingFace基于Whisper训练并开源了一个全新的Distil-Whisper,它比Whisper-v2速度快6倍,参数小49%,而实际效果几乎没有区别。
检索增强生成(Retrieval-augmented Generation,RAG)是一种结合了检索和大模型生成的方法。它从一个大型知识库中检索与输入相关的信息,然后利用这些信息作为上下文和问题一起输入给大语言模型,并让大语言模型基于这些信息生成答案的方式。检索增强生成可以让大语言模型与最新的外部数据或者知识连接,进而可以基于最新的知识和数据回答问题。尽管检索增强生成是一种很好的补充方法,但是,如果文档切分有问题、检索不准确,结果也是不好的。
检索增强生成(Retrieval-augmented Generation,RAG)可以让大语言模型与最新的外部数据或者知识连接,进而可以基于最新的知识和数据回答问题。尽管检索增强生成是一种很好的补充方法,如果文档切分有问题、检索不准确,结果也是不好的。而检索增强生成也有一些提升方法,本文基于LangChain提供的一些方法给大家总结一下。
关于什么是好的泛化、存在哪些类型的泛化以及在不同的场景中哪些应该被优先考虑,人们对此了解甚少且意见不一。而MetaAI等机构的研究人员最近发布了一篇关于大模型泛化能力的综述,详细总结了大模型泛化能力的分类等。本篇论文详细总结一下大模型的泛化能力分类以及什么样的泛化是未来的中的重点等问题。
大模型的发展一个重要的基础条件是底层硬件计算能力的大幅提高,特别是GPU的发展,与transformer架构的大模型训练非常契合。当前全球最大的GPU供应商英伟达系列的显卡几乎垄断了大模型训练与推理的所有GPU芯片市场。除了英伟达显卡本身算力强悍外,基于英伟达GPU之上构建的CUDA、PyTorch等平台软件生态也是非常重要的一环。而最新的PyTorch2.1版本发布的一个beta特性中包含了对华为昇腾芯片的原生支持,这也是大模型生态多样性发展的一个很重要的信号。
上海人工智能实验室是国内顶尖的人工智能实验室,此前在大模型领域,他们与商汤科技发布的书生·浦语系列在国内引起了很大的关注。此次,他们又开源了一个全新的200亿参数规模的大语言模型InternLM 20B,应该是截止目前中文领域开源的参数规模最大的一个大模型了。
LM-SYS全称Large Model Systems Organization,是由加利福尼亚大学伯克利分校的学生和教师与加州大学圣地亚哥分校以及卡内基梅隆大学合作共同创立的开放式研究组织。该团队在2023年3月份成立,目前的工作是建立大模型的系统,是聊天机器人Vicuna的发布团队。今天开源 了包含3.3万包含真实人类偏好的对话数据集和3000条专家标注的对话数据集:Chatbot Arena Conversation Dataset和MT-bench人工注释对话数据集。
OpenAI最新发布了GPT-3.5-Turbo-Instruct,这是一款强大的指令遵循大模型。尽管官方没有发布官方博客介绍,但我们将在本文中详细探讨这一模型的特点以及其在人工智能领域的价值。
检索增强生成(Retrieval-augmented generation,RAG)是一种将外部知识检索与大型语言模型生成相结合的方法,通常用于问答系统。当前使用大模型基于外部知识检索结果进行问答是当前大模型与外部知识结合最典型的方式,也是检索增强生成最新的应用。然而,近期的研究表明,这种方式并不总是最佳选择,特别是当检索到的文档数量较多时,这种方式很容易出现回答不准确的情况。为此,LangChain最新推出了LongContextReorder,推出了一种新思路解决这个问题。
CMU的工程人工智能硕士学位的研究生Jean de Nyandwi近期发表了一篇博客,详细介绍了当前大语言模型主流架构Transformer的历史发展和当前现状。这篇博客非常长,超过了1万字,20多个图,涵盖了Transformer之前的架构和发展。此外,这篇长篇介绍里面的公式内容并不多,所以对于害怕数学的童鞋来说也是十分不错。本文是其翻译版本,欢迎大家仔细学习。
随着大型语言模型(LLMs)的不断发展,它们在训练和推理方面的计算需求已经呈指数级增长。这一趋势不仅带来了高昂的成本和能源消耗,还引入了模型部署和可伸缩性方面的障碍。为此,DeciLM开源了2个全新的DeciLM-6B和DeciLM-6B-Instruct大模型,参数比LLaMA2 7B略低,性能相当,但是推理速度却超过LLaMA2 7B的15倍。
基于人类反馈的强化学习方法(Reinforcement Learning with Human Feedback,RLHF)是一种强化学习(Reinforcement Learning,RL)的变种,它利用人类的专业知识和反馈来指导机器学习模型的训练和决策过程。这种方法旨在克服传统RL方法中的一些挑战,例如样本效率低、训练困难和需要大量的试错。在大语言模型(LLM)中,RLHF带来的模型效果提升不仅仅是模型偏好与人类偏好的对齐,模型的理解能力和效果也会更好。
随着大型语言模型(LLM)如 GPT-3 和 BERT 在 AI 领域的崛起,如何在实际应用中高效地进行模型推断成为了一个关键问题。为此,英伟达推出了全新的大模型推理提速框架TensorRT-LM,可以将现有的大模型推理速度提升4倍!
Anthropic公司宣布,其开发的智能助手Claude推出收费订阅服务,命名为Claude Pro,定价20美元一个月(或者18英镑)。免费用户依然可以使用,但是有发送频率限制。本篇博客将解释一下ClaudeAI的Claude服务是否收费以及收费之后的ClaudePro提供的服务等。
大模型对显卡资源的消耗是很大的。但是,具体每个模型消耗多少显存,需要多少资源大模型才能比较好的运行是很多人关心的问题。此前,DataLearner曾经从理论上给出了大模型显存需求的估算逻辑,详细说明了大模型在预训练阶段、微调阶段和推理阶段所需的显存资源估计,而HuggingFace的官方库Accelerate直接推出了一个在线大模型显存消耗资源估算工具Model Memory Calculator,直接可以估算在HuggingFace上托管的模型的显存需求。
Prompt技巧一直是提升ChatGPT等大语言模型使用效率的最重要方法之一。为此,OpenAI官方也在不断地分享官方的Prompt技巧。2023年的8月31日,OpenAI官方最新分享了一个教室使用的Prompt来帮助老师授课的案例。尽管这是针对老师的Prompt教程,但是其中的设计思路其实也可以广泛运用在客服、问答系统、编程等领域。