标签为 #reranker# 的博客

聚焦人工智能、大模型与深度学习的精选内容,涵盖技术解析、行业洞察和实践经验,帮助你快速掌握值得关注的AI资讯。

最新博客

重磅!阿里开源2个多模态向量大模型和重排序大模型:Qwen3-VL-Embedding和Qwen3-VL-Reranker,图片和视频也可以用来做RAG了!

就在刚刚,阿里巴巴正式免费开源了两款全新的多模态模型——Qwen3-VL-Embedding(多模态向量模型)和 Qwen3-VL-Reranker(多模态重排序模型),首次在开源体系中系统性补齐了多模态 RAG 在“向量化检索 + 精排重排”两个关键环节上的能力空白。这两个模型是基于强大的Qwen3-VL基础模型构建的专用多模态向量与重排(Reranking)模型。

阅读 600

基于Emebdding的检索增强生成效果不同模型对比:重排序十分有利于检索增强生成的效果

基于Embedding模型的大语言模型检索增强生成(Retrieval Augmented Generation,RAG)可以让大语言模型获取最新的或者私有的数据来回答用户的问题,具有很好的前景。但是,检索的覆盖范围、准确性和排序结果对大模型的生成结果有很大的影响。Llamaindex最近对比了主流的`embedding`模型和`reranker`在检索增强生成领域的效果,十分值得关注参考。

阅读 3481