从阿里专家内部交流纪要看国内AI模型发展现状
本文主要描述了阿里眼中国内各家企业的大模型水平以及一些硬件算力的判断,同时结合部分其它信息整理。里面涉及到当前国内各大企业模型水平判断(如百度文心一言、华为盘古等)以及算力储备信息。
聚焦人工智能、大模型与深度学习的精选内容,涵盖技术解析、行业洞察和实践经验,帮助你快速掌握值得关注的AI资讯。
本文主要描述了阿里眼中国内各家企业的大模型水平以及一些硬件算力的判断,同时结合部分其它信息整理。里面涉及到当前国内各大企业模型水平判断(如百度文心一言、华为盘古等)以及算力储备信息。
预训练大模型,尤其是大语言模型已经是当前最火热的AI技术。2018年Google发布BERT模型之后,fine-tuning技术也随之流行,即将预训练模型的权重冻结,然后根据具体任务进行微调变得十分有效且被应用在很多场景。而随着ChatGPT的火热,parameter-efficient fine-tuning和prompt-tuning技术似乎也有替代传统fine-tuning的趋势,本篇论文将简单描述预训练模型领域这三种微调技术及其差别。
随着预训练大模型技术的发展,基于prompt方式对模型进行微调获得模型输出已经是一种非常普遍的大模型使用方法。但是,对于同一个问题,使用不同的prompt也会获得不同的结果。为了获得更好的模型输出,对prompt进行调整,学习prompt工程技巧是一种必备的技能。
Prompt-Tuning、Instruction-Tuning和Chain-of-Thought是近几年十分流行的大模型训练技术,本文主要介绍这三种技术及其差别。