大模型工具使用的三次进化:从 Function Calling 到程序化编排
本文系统梳理了大模型工具使用(Tool Use)的三个演进阶段:循环式工具选择(Function Calling)、计划驱动执行(Plan-then-Execute)和程序化工具编排(Programmatic Tool Calling)。从 OpenAI Function Calling 的单次调用模式,到支持并行调度的计划-执行范式,再到最新的代码驱动编排方式,工具使用正在从"逐步决策"走向"计划驱动、代码驱动"。
聚焦人工智能、大模型与深度学习的精选内容,涵盖技术解析、行业洞察和实践经验,帮助你快速掌握值得关注的AI资讯。
本文系统梳理了大模型工具使用(Tool Use)的三个演进阶段:循环式工具选择(Function Calling)、计划驱动执行(Plan-then-Execute)和程序化工具编排(Programmatic Tool Calling)。从 OpenAI Function Calling 的单次调用模式,到支持并行调度的计划-执行范式,再到最新的代码驱动编排方式,工具使用正在从"逐步决策"走向"计划驱动、代码驱动"。
Tool Decathlon(简称 Toolathlon)是一个针对语言代理的基准测试框架,用于评估大模型在真实环境中使用工具执行复杂任务的能力。该基准涵盖32个软件应用和604个工具,包括日常工具如 Google Calendar 和 Notion,以及专业工具如 WooCommerce、Kubernetes 和 BigQuery。它包含108个任务,每个任务平均需要约20次工具交互。该框架于2025年10月发布,旨在填补现有评测在工具多样性和长序列执行方面的空白。通过执行式评估,该基准提供可靠的性能指
GGML是在大模型领域常见的一种文件格式。HuggingFace上著名的开发者Tom Jobbins经常发布带有GGML名称字样的大模型。通常是模型名+GGML后缀,那么这个名字的模型是什么?GGML格式的文件名的大模型是什么样的大模型格式?如何使用?本文将简单介绍。